转运氨基酸种类
BNCT就是现实版的特洛伊木马,把酪氨酸改造了一条支链,把硼元素插到苯环上,然后利用LAT1(大型氨基酸转运蛋白质)被免疫系统把BPA当做氨基酸输送到细胞里,被细胞吃掉。
肾癌靶向药物治疗
日本千叶大学一个研究小组确认,人体细胞上负责转运氨基酸的跨膜蛋白“氨基酸转运蛋白LAT1 (SLC7A5)”会在肾癌出现时特异性表达,与癌症的转移和发病息息相关。另外还发现,抑制这种转运蛋白会有抗癌效果。研究团队认为,将该转运蛋白作为肾细胞癌的生物标志物和治疗靶点,有望开发出新的药物。
氨基酸转运蛋白在细胞中的主要作用是转运氨基酸,尤其是大型中性氨基酸转运蛋白(LAT),负责获取维持人体生存所需的必需氨基酸。
研究结果表明,氨基酸转运蛋白LAT1有望成为肾细胞癌的生物标志物,其抑制剂也有望成为治疗药物。今后研究小组将开展该蛋白在肾细胞癌、前列腺癌和膀胱癌等癌症中的应用研究,并计划启动临床试验。
(本栏目稿件来源:日本科学技术振兴机构 整编:本报驻日本记者陈超)
责编:李文瑶
肾癌新靶点有助新药开发,肾癌靶向药物治疗
《原清华大学生物学教授颜宁在科学技术实验上的探索与创新》
1996年-2000年清华大学生物科学与技术系学士;
2000年-2004年美国普林斯顿大学分子生物学系,博士,导师为结构生物学家、清华大学教授、中国科学院院士、欧洲分子生物学学会外籍会士、美国国家科学院外籍院士、美国人文与科学院外籍院士施一公;
2005年-2007年 美国普林斯顿大学分子生物学系从事博士后研究;
2007年-至今清华大学教授、博士生导师;
2017年5月7日从清华大学证实,颜宁已接受美国普林斯顿大学邀请,受聘该校分子生物学系雪莉·蒂尔曼终身讲席教授的职位。
研究方向
人类基因组中编码蛋白的所有基因约有30%编码膜蛋白。
膜蛋白在一切生命过程中起着关键作用,具有重要的生理功能。FDA批准上市的药物中,约50%的作用靶点为膜蛋白。
因此,对膜蛋白结构与功能的研究具有极高的生物学意义及医药应用前景。
转运蛋白(transport proteins)是膜蛋白的一大类,介导生物膜内外的化学物质以及信号交换。脂质双分子层在细胞或细胞器周围形成了一道疏水屏障, 将其与周围环境隔绝起来。
尽管有一些小分子可以直接渗透通过膜,但是大部分的亲水性化合物,如糖,氨基酸,离子,药物等等,都需要特异的转运蛋白的帮助来通过疏水屏障。
因此,转运蛋白在营养物质摄取,代谢产物释放以及信号转导等广泛的细胞活动中起着重要的作用。
大量疾病都与膜转运蛋白功能失常有关,转运蛋白是诸如抗抑郁剂,抗酸剂等大量药物的直接靶点。
研究主要集中在次级主动运输蛋白的工作机理上。
交替通路模型,被用来解释转运蛋白的工作机理,在这个模型中,转运蛋白至少采取两种构象来进行底物的装载及卸载:
一种向膜外开放,一种向膜内开放。有许多结构和生物物理学证据支持这个模型。
但是,仍有两个最有趣的基本问题没有解决。
第一,主动运输的能量偶联机制是什么?
第二,在转运过程中,是什么因素触发了转运蛋白的构象变化?使用基于结构的研究手段对次级主动运输蛋白进行研究,以期解决转运蛋白工作机理中的基本问题。
主要成就
2014年,颜宁率领的团队在世界上首次解析了人源葡萄糖转运蛋白GLUT1的三维晶体结构。
2015年进一步获得了具备更多构象的GLUT3结合底物和抑制剂的超高分辨率结构,从而清晰揭示了葡萄糖跨膜转运这一基本细胞过程的分子基础。
此外,她还对离子通道结构生物学领域做出重要贡献,解析了电压门控钠离子通道的晶体结构,最近又利用最新冷冻电镜技术获得了最大钙离子通道RyR1的高分辨率结构。
2015年进一步获得了具备更多构象的GLUT3结合底物和抑制剂的超高分辨率结构,从而清晰揭示了葡萄糖跨膜转运这一基本细胞过程的分子基础。
2016年9月-Science-关闭及开放构象的RyR2
2016年9月,颜宁教授研究组与加拿大卡尔加里大学陈穗荣研究组合作在《Science》(DOI:10.1126/science.aah5324)发表研究长文,揭示了已知分子量最大的离子通道Ryanodine受体RyR2亚型处于关闭和开放两种状态的三维电镜结构,探讨了RyR2的门控机制。
通过比较关闭和开放状态的两个结构,发现位于穿膜区域负责通透离子的通道有明显的变化:
在开放构象中,该通道发生扩张,从而使得钙离子能够顺利地从肌质网内部转移到细胞质中。通过对RyR2中每个相对独立的结构域的仔细比较和分析,认为中心结构域极有可能是引发RyR开放的关键,这一发现与之前有关RyR的功能研究结论相吻合。
另外,研究组还获得了分辨率为5.7埃的RyR1开放构象结构,并基于结构比对,初步分析了RyR1的门控机理,有关RyR1的成果已分别发表在《Nature》(Doi:10.1038/nature14063)和《Cell Research》(Doi:10.1038/cr.2016.89)上,有关Cav1.1的论文已分别发表于《Science》(DOI: 10.1126/science.aad2395)和《Nature》(Doi:10.1038/nature19321)杂志上。上述研究与最新的这篇研究论文极大地促进了人们对于兴奋-收缩偶联的理解。
2017年2月,真核生物电压门控钠离子通道的拓扑图和三维电镜结构
2017年2月,颜宁教授研究组在《科学》(Science, DOI: 10.1126/science.aal4326)在线发表了题为“Structure of a eukaryotic voltage-gated sodium channel at near atomic resolution”的研究长文,在世界上首次报道了真核生物电压门控钠离子通道。
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/26165.html