氨基酸物理的性质
生物学家劳伦斯·赫斯特和斯蒂芬·弗里兰在20世纪90年代末把天然基因密码和计算机随机产生的几百万组密码拿去比对,结果轰动一时。他们想知道,如果发生点突变这种把一个字母换掉的变异,哪一套密码系统能保留最多正确的氨基酸,或将它代换成另一个性质相似的氨基酸。
结果他们发现,天然的基因密码最经得起突变的考验。点突变常常不会影响氨基酸序列,而如果突变真的改变了氨基酸,也会由另一个物理特性相似的氨基酸来取代。据此,赫斯特与弗里兰宣称,天然的遗传密码比成千上万套随机产生的密码要优良得多。它不但不是大自然密码学家愚蠢而盲目的作品,而是万里挑一的密码系统。
天然的三联基因密码的第一个字母都有特定的对应方式。举例来说,所有以丙酮酸为前体合成的氨基酸,它们密码的第一个字母都是T。所有由α-酮戊二酸所合成的氨基酸,其三联密码第一个字母都是C;所有由草酰乙酸合成的氨基酸,第一个字母都是A;最后,几种简单前体通过单一步骤所合成的氨基酸,第一个字母都是G。
三联密码的第二个字母和氨基酸是否容易溶于水有关,或者说和氨基酸的疏水性有关。亲水性氨基酸会溶于水,疏水性氨基酸不会溶于水,但会溶在脂肪或油里,比如溶在含有脂质的细胞膜里。所有的氨基酸,可以从“非常疏水”到“非常亲水”排列成一张图谱,而正是这张图谱决定了氨基酸与第二个密码字母之间的关系。疏水性最强的六个氨基酸里有五个,第二个字母都是T,所有亲水性最强的氨基酸第二个字母都是A。介于中间的有些是G有些是C。
三联密码的第三个字母不含任何信息,不管接上哪一个字母都没关系,这组密码子都会翻译出一样的氨基酸。以甘氨酸为例,它的密码子是GGG,但是最后一个G可以代换成T、A或C。
第三个字母的随机性暗示了一些有趣的事情。二联密码可以编码16种氨基酸。如果我们从20个氨基酸里拿掉5个结构最复杂的(剩下15个氨基酸,再加上一个终止密码子)这样前两个字母与这15个氨基酸特性之间的关联就更明显了。因此,最原始的密码可能只是二联密码,后来才靠“密码子捕捉”的方式成为三联密码,也就是各氨基酸彼此竞争第三个字母。
第一个字母和氨基酸前体之间的关系直截了当,第二个字母和氨基酸的疏水性相关,第三个字母可以随机选择。这套密码系统除了可以忍受突变,还可以降低灾难发生时造成的损失,同时可以加快进化的脚步。因为如果突变不是灾难性的,那应该会带来更多的好处。
组成生命体常见的氨基酸有多少种
国际团队现已证实,最重要的生命基础单位,也是最简单的氨基酸——甘氨酸,可在太空的恶劣条件下形成。
研究结果发表在《自然·天文学》上,表明甘氨酸和其他氨基酸很可能在密集的星际云团中形成,出现氨基酸后,星际物质才转化为新的恒星和行星。
彗星是太阳系中最原始的天体,反映了太阳和行星即将形成时存在的分子。在67P/Churyumov-Gerasimenko彗星以及从星尘任务返回地球的样品中检测到甘氨酸的现象表明,氨基酸(例如甘氨酸)的出现早于恒星。但是直到最近,人们仍认为甘氨酸的形成需要能量,这对可形成甘氨酸的环境设定了明确的限制。
主要在荷兰莱顿天文台天体物理学实验室的天体物理学家和太空化学家团队表明,即便没有能量,甘氨酸也可能在冰冷的尘埃颗粒表面形成,也就是所谓的“黑暗化学”。这一发现与先前的研究相矛盾,前者认为产生氨基酸分子需要紫外线辐射。
伦敦女王玛丽大学的塞尔吉奥·伊波波罗博士(Sergio Ioppolo)说:“暗化学是指不需要高能辐射的化学。在实验室中,我们能够模拟暗星际云中冷尘埃的情况。颗粒被薄薄的冰层覆盖,随后通过撞击原子进行处理,从而导致前体物质碎裂,反应性中间体重新结合。”
科学家首先表明,那可形成甲胺,这是在彗星67P中发现的甘氨酸前体。然后,使用独特的超高真空设置,配备系列原子束线和精确的诊断工具,他们能够确认出现了甘氨酸分子。在此过程中必须存在水冰。
莱顿天文台天体物理实验室主任哈罗德·林纳茨说:“这项工作的重要结论是,被认为是生命基础的分子早于恒星和行星就已出现。说明在恒星系演化中,甘氨酸或许已经普遍存在,包含在彗星和小行星中的冰得以保留,而彗星和小行星才是最终构成行星的物质。”
甘氨酸一旦形成,也可以成为其他复杂有机分子的前体。按照相同的机理,原则上可以在甘氨酸主链上添加其他官能团,从而在太空中的冷暗云中形成其他氨基酸,例如丙氨酸和丝氨酸。最后,这种丰富的有机分子借助彗星被送往许多其他行星。
https://www.sciencealert.com/dark-chemistry-could-forge-the-building-blocks-of-life-in-space-no-stars-required
生命基础单位、最简单的氨基酸形成于恒星出现之前,组成生命体常见的氨基酸有多少种
我们找不出任何结构上的原因来解释密码排列,不同的氨基酸与其对应的密码子之间似乎并没有任何物理或化学的关联,克里克称细胞的这套密码系统为“冻结的偶然”。
但是大自然的“偶然”密码系统却给克里克带来一个问题。为什么只有一个偶然?为什么不是好多个偶然?如果这套密码系统是随机产生的,那理论上它不会优于其他密码系统,因此也不会有什么自然选择“瓶颈效应”让这套密码系统胜出。用克里克的话来说就是:“其优势远超其他密码系统,因而独活下来”。但是既然没有选择的瓶颈,那为什么现今没有好几套密码系统,存在于不同的生物体内呢?
答案很明显,那就是地球上所有的生物都是来自同一个共祖,而这套密码系统早在共祖身上就决定好了。更哲学一点的说法就是,生命只在地球上诞生了一次,才使得这套密码系统看上去如此独特、罕见甚至反常。
对于克里克而言,这暗示了一次感染、一次播种。他猜测生命是由某个外星生物,将一个类似细菌的东西播种到地球上。他甚至进一步推测,认为细菌是外星人用宇宙飞船送到地球上的,他称这一理论为“定向泛种论”,并在1981年出版的《生命:起源与本质》里详细阐述了该理论。如同科普作者马特·里德利给克里克写的传记所说:“这个主题让许多人大开眼界。伟大的克里克竟写出外星生命乘坐宇宙飞船在宇宙间播种的故事,他是被成功冲昏头了吗?”
偶然密码系统这样的概念,是否可以证明上述的生命观,取决于个人判断。但这个理论是在说,密码本身并不需要任何优势或劣势来决定能不能突破瓶颈,只需某种偶然情况就可以选择某些特定生命,甚至是某些不可思议的意外,比如小行星撞击地球,就可以毁灭掉所有生命只留下一种,然后就产生了一套唯一的密码系统。
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/22034.html