氨基酸的两性电离
学习打卡第一天:
医学生集合了

生物化学与分子生物学:蛋白质主要由碳、氢、氧、氮、硫组成,有些蛋白质还含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别还含有碘。各种蛋白质的含氮量很接近,平均为16%。
氨基酸根据其侧链的结构和理化性质可分为五类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸。非极性脂肪族氨基酸:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、甲硫氨酸;极性中性氨基酸:丝氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、苏氨酸;含芳香环的氨基酸:苯丙氨酸、酪氨酸、色氨酸;酸性氨基酸:天门冬氨酸、谷氨酸、;碱性氨基酸;精氨酸、赖氨酸、组氨酸。
在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
含共轭双键的氨基酸具有紫外线吸收性质。
茚三酮反应是指茚三酮水合物在弱酸性溶液中与氨基酸共加热时,氨基酸被氧化脱氨、脱羧,而茚三酮水合物被还原,其还原物可与氨基酸加热分解产生的氨结合,再与另一份子茚三酮缩合成为蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出来的氨量成正比,因此可作为氨基酸定量分析方法。
由2-20个氨基酸相连成的肽成为寡肽,而更多的氨基酸相连成的肽称为多肽。多肽链有两端,其游离a-氨基的一端称为氨基末端或N-端,游离a-羧基的一端称为羧基末端或C-端。肽链中的氨基酸分子因脱水缩合而基团不全,成为氨基酸残基。
[奋斗][奋斗]
活性污泥负荷过低后果
活性污泥表面带负电荷,物化污泥带正电荷,是很多人知道的,所以生化产生的污泥选择阳离子絮凝剂,物化泥选用阴离子絮凝剂。但是活性污泥为什么带负电荷?这跟活性污泥的主要组成细菌有关系,细菌的电荷决定了活性污泥的电荷,本文带你全面解析细菌带电荷的原理!
1、什么是等电点?
等电点(pI):在某一pH的溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。
等电点的作用
在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
两性离子所带电荷因溶液的pH值不同而改变,当两性离子正负电荷数值相等时,溶液的pH值即其等电点。
当外界溶液的pH大于两性离子的pI值,两性离子释放质子带负电。
当外界溶液的pH小于两性离子的pI值,两性离子质子化带正电。
当达到等电点时氨基酸在溶液中的溶解度最小。
2、什么是酸碱度?
酸碱度是指溶液的酸碱性强弱程度,一般用PH值来表示。
pH值<7为酸性,pH值=7为中性,pH值>7为碱性。
pH值,亦称氢离子浓度指数、酸碱值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家S?ren Peter Lauritz S?rensen提出。p代表德语Potenz,意思是力量或浓度,H代表氢离子(H)。有时候pH也被写为拉丁文形式的pondus hydrogenii。
通常情况下(25℃、298K左右),当pH<7的时候,溶液呈酸性,当pH>7的时候,溶液呈碱性,当pH=7的时候,溶液为中性。
注意:pH值允许小于0,如 盐酸(10 mol/L)的pH为-1。
3、等电点与酸碱度的区别
氨基酸同时含有氨基和羧基,是两性电解质,在水溶液中均已兼性离子或极偶离子的形式存在。氨基酸的兼性离子在酸性溶液中可接受质子形成阳离子,在碱性溶液中则释放质子形成阴离子。而当氨基酸的净电荷为零时,这个时候的ph成为等电点。
也就是说氨基酸的等电点与其所在环境的酸碱度没有太大关系,等电点只决定它在水溶液中的存在形式。
等电点有可能是酸性也有可能是碱性,并非中性状态!
4、细菌的电荷属性
细菌干重的50-80%为蛋白质,蛋白质由20种氨基酸按一定的排列顺序由肽键连接而成。而且细菌的细胞壁的主要成分也有蛋白质,所以细菌的等电点和氨基酸的等电点相近!
已知细菌的等电点在Ph为2~5。革兰氏阳性菌为2~3,革兰氏阴性菌为4~5。
一般,细菌的培养、染色、试验、利用过程均在偏碱性(7~7.5)、中性、偏酸性(6~7)条件下,都高于细菌的等电点,故均带有负电荷。
所以,细菌的电荷决定了活性污泥的电荷属性,污水处理中活性污泥的适宜PH在中性或偏碱性的状态下才能正常的代谢生存,所以,在正常的污水处理中,我们的活性污泥都是携带负电荷的!
来源:环保工程师
活性污泥为什么是带负电荷的?,活性污泥负荷过低后果
南京大学龙亿涛教授团队在纳米孔道中的单分子特征离子指纹图谱研究进展
纳米孔道是一种自然界广泛存在的可运输离子、水分子和生物分子的纳米级孔道。生物纳米孔道可由天然的蛋白质构成。近年来,研究人员利用电场力将单个分子牵引至单个生物纳米孔道内,排开孔道内的部分离子,进而产生特征的离子流阻断信号反应了单分子的化学组成、质量、结构等信息,这便是纳米孔道单分子电化学的基本原理。纳米孔道内壁氨基酸残基、质子、离子及单个传输分子之间发生的协同弱相互作用还会引起限域空间内几十个离子的瞬态变化,其产生的极微小的离子流信号常常被掩盖在纳米孔道的电流噪声中,使得这些单分子特征信息无法获取。
龙亿涛教授团队多年聚焦于对电化学高精度测量仪器的研制,通过新的复杂信息提取方式,获取了纳米孔道离子流信号的瞬时频率,发展了单分子时频谱学分析技术,阐明了纳米孔道电流中低频域区频率特征值的物理化学特性,提出了单分子频率指纹图谱的数学模型,建立起孔道内离子指纹图谱的谱学分析方法,实现了对突变Aerolysin纳米孔道内离子相互作用网络特性的预测。
图1. 纳米孔道中的单分子特征离子指纹图谱分析方法 (A)纳米孔道单分子电化学测量原理图(左);单个模型分子poly(dA)4通过Aerolysin纳米孔道产生的离子流特征信号(右上),及该信号被经验模态分解(EEMD)后获得的本征模态函数(IMF);(B)经希尔伯特-黄瞬时频率分析变换后的单分子特征离子频率谱图;(C)低频域区下单分子特征离子频率谱图。
?研究团队将单个单个模型生物分子poly(dA)4穿过Aerolysin蛋白质孔道所获得的离子流电号经过经验模态分解(EMD)及希尔伯特谱分析(HAS),获得了信号在整个测量频率相应范围内的单分子特征离子频率谱图,提取了特征峰值频率(fm)和峰值振幅(am)。通过研究不同pH、电解质浓度及类型、外加电压、温度等条件下的单分子特征频率指纹图谱变化,发现离子、单个传输分子、纳米孔道内壁氨基酸残基间的可逆平衡调节了质子、离子与纳米孔道的结合/解离过程,影响了离子流电信号的低频组分。进一步,研究团队总结了特征频率的物理化学特性,即fm反映了纳米孔道内离子与孔道内壁氨基酸残基间的解离速率,am描述了纳米孔道内壁氨基酸残基在限域相互作用网络下的结合离子数目。
图2. 特征峰值频率(fm)和峰值振幅(am)的影响因素研究 (A) pH;(B)离子强度;(C)离子种类;(D)实验温度;(E) 施加电压。揭示离子相互作用网络的峰值频率(上)和峰值振幅(下)。
图3. 单分子特征离子指纹图谱及预测研究 (A)系列238位点突变型AeL纳米孔道238(左)及特征峰值频率(fm)的相关性分析(右);(B)特征峰值频率(fm)与突变氨基酸等电点,单分子阻断时间,突变氨基酸范德华体积间的非线性依赖关系;(C) 238位点突变型AeL纳米孔道的单分子特征离子指纹图谱预测模型。
为进一步验证单分子特征离子指纹图谱的普适性,研究人员构建了系列238位点突变型Aerolysin纳米孔道,改变了纳米孔道灵敏探测区域内氨基酸残基与单个生物分子的相互作用,归纳了氨基酸残基的化学特性对频率指纹特性的影响规律。实验结果显示,在无分析物存在于纳米孔道的情况下,特征峰值频率(fm)与体系电导相关;而在有单个分子通过纳米孔道的时候,特征峰值频率(fm)与突变位点氨基酸残基化学性质的相关性显著增加。进一步,利用多元回归分析建立了单分子频率指纹图谱经验模型,描述了离子指纹图谱特征fm和氨基酸残基电性、范德华体积、亲疏水性等物理化学特征间的关系,实现了对突变型纳米孔道离子指纹图谱频率特征的预测。该方法有助于精准探测纳米孔道单分子动态相互作用,实现纳米孔道单分子蛋白质测序。
?相关成果以“Single-Molecule Frequency Fingerprint for Ion Interaction Networks in a Confined Nanopore”为题(VIP Paper),发表于《德国应用化学》(Angewandte Chemie International Edition)文章链接:网页链接
该工作得到了国家自然科学重大科研仪器研制项目及优秀青年基金项目、南京大学化学和生物医药创新研究院的支持,南京大学化学专业博士研究生李欣怡为论文的第一作者,应佚伦教授和龙亿涛教授为论文的通讯作者。
来源:南京大学
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/21727.html